Background Elevated resting pulse rate (RPR) is a well-recognized risk factor for adverse outcomes. Epidemiological evidence supports the beneficial effects of regular exercise for lowering RPR, but studies are mainly confined to persons younger than 65 years. We set out to evaluate the utility of a physical activity (PA) intervention for slowing RPR among older adults.

Methods A total of 424 seniors (ages 70-89 years) were randomized to a moderate intensity PA intervention or an education-based “successful aging” health program. Resting pulse rate was assessed at baseline, 6 months, and 12 months. Longitudinal differences in RPR were evaluated between treatment groups using generalized estimating equation models, reporting unstandardized β coefficients with robust SEs.

Results Increased frequency and duration of aerobic training were observed for the PA group at 6 and 12 months as compared with the successful aging group ($P < .001$). In both groups, RPR remained unchanged over the course of the 12-month study period ($P = .67$). No significant improvement was observed (β [SE] = 0.58 [0.88]; $P = .51$) for RPR when treatment groups were compared using the generalized estimating equation method. Comparable results were found after omitting participants with a pacemaker, cardiac arrhythmia, or who were receiving β-blockers.

Conclusions Twelve months of moderate intensity aerobic training did not improve RPR among older adults. Additional studies are needed to determine whether PA of longer duration and/or greater intensity can slow RPR in older persons. [Am Heart J 2014;168:597-604.]
brief, LIFE-P was a single-masked, randomized controlled trial designed to evaluate the effects of PA on mobility limitations. The study was conducted at 4 field centers (The Cooper Institute, Dallas, TX; Stanford University, Palo Alto, CA; University of Pittsburgh, Pittsburgh, PA; and Wake Forest University, Winston-Salem, NC). Participants were ages 70 to 89 years, were at high risk for mobility disability (defined as a score < 10 on the short physical performance battery [SPPB]), were able to complete a 400-meter walk test in 15 minutes without the use of an assistive device, and led a sedentary lifestyle (defined as 20 minutes of regular PA per week during the prior month). Exclusion criteria included severe heart failure (New York Heart Association functional classifications III or IV), uncontrolled angina pectoris, severe pulmonary disease, chest pain or severe shortness of breath during the 400-meter walk test, severe arthritis, cancer requiring treatment in the past 3 years, Parkinson disease, other severe illnesses that may interfere with PA, life expectancy < 12 months, and a Mini-Mental State Examination score < 21. Temporary exclusion criteria included acute myocardial infarction, deep venous thrombosis, pulmonary embolism, major arrhythmias or stroke within 6 months, recent major surgery, uncontrolled hypertension, uncontrolled diabetes, or ongoing lower extremity physical therapy. All participants provided written informed consent, and the review committees for each field site approved the study protocol. All aspects of this investigation were conducted in accordance with the principles expressed in the Declaration of Helsinki and is registered at http://www.ClinicalTrials.gov (registration no. NCT00116194). Any sources of funding used to support this work are outlined in the appendix, and the authors are solely responsible for the design and conduct of this study, all study analyses, and drafting and editing of the paper, and its final contents.

Procedures
Participants were enrolled between April 2004 and February 2005 and were randomized to either a walking-based PA program or an education-based “successful aging (SA)” health program for a duration of 12 months. Of the 3,141 older persons initially screened by telephone, 213 (6.8%) were assigned to the PA group and 211 (6.7%) were assigned to the SA group (Figure).

Physical activity treatment group
The PA intervention included a combination of aerobic walking, strength, balance, and flexibility exercises that were implemented in 3 phases: adoption (the first 2 months of intervention), transition (months 3-4), and maintenance (months 7-12). Physical activity participants received a 45-minute induction session aimed at describing specific aspects of the intervention including safety. The adoption phase consisted of three supervised center-based exercise sessions (40-60 min) per week. During the subsequent transition phase, the number of center-based exercise sessions decreased (2/week), and a home-based intervention involving endurance, strengthening, and flexibility exercises was introduced (≥ 3/week). Finally, the maintenance phase consisted of the home-based intervention, along with optional once to twice per week center-based sessions and monthly telephone contacts.

Walking was the primary mode of exercise in this study, as it has been previously recommended by expert bodies, does not need to be center based, and is widely acceptable and safe among older individuals. According to the surgeon general’s recommendations, the target for the walking component was 150 minutes per week (≥ 5 days), achieved in a gradual and individualized fashion across the first 3 months of the trial. For the walking component, moderate intensity exercise was promoted. The Borg scale was used to regulate the intensity of exercise. Study participants were asked to walk at a perceived exertion of 13 (somewhat hard) and were discouraged from exercising at levels above 15 (hard) or below 11 (fairly light).

Successful aging treatment group
An SA health education intervention was used as the active control. Participants were required to attend small group sessions on a weekly basis for the first 26 weeks and monthly thereafter. The educational sessions were designed to increase awareness on a variety of health topics relevant to older adults including nutrition, how to effectively negotiate the health care system, medications, foot care, recommended preventive services at different ages, and how to travel safely. Basic educational information with regards to PA was also provided. Each session concluded with a short instructor-led program (5-10 minutes) of upper extremity stretching exercises.

LIFE-P Study measures
Data collection occurred every 6 months during clinic visits. To ensure masking, study members were instructed not to discuss their intervention assignment during the assessments, which were conducted at locations separate from the intervention sites. Complete information about the LIFE-P assessments are provided in the main outcomes article. In brief, using a structured interview method, data were obtained on participants’ age, sex, race, smoking status, income, chronic conditions, and medication use. The Community Healthy Activities Model Program for Seniors (CHAMPS) self-report PA questionnaire was used to evaluate changes in PA over time. The CHAMPS questionnaire has been developed specifically to evaluate the frequency and duration of PA performed across an average week in the past month among older men and women. This measure has good psychometric properties and is sensitive to change.

Waist circumference (centimeter) was measured around the slimmest region between the ribs and iliac
Resting pulse rate was recorded in duplicate via pulse palpitation of the radial artery over 30 seconds, after participants had been resting quietly for 5 minutes in the seated position. Blood pressure was determined twice using conventional auscultation and sphygmomanometry, with participants also having rested quietly for 5 minutes in the seated position. In the current analysis, the average of the RPR and blood pressure measures were used. As an index of myocardial oxygen consumption, rate pressure product (RPP) was calculated as the product of RPR and systolic blood pressure. Details of this hemodynamic parameter have been described previously. Before assessing RPR and blood pressure in the morning, participants were instructed to remain fasting, not to consume alcohol or caffeine, and not to engage in strenuous PA.

Statistical methods

Continuous variables were summarized as means ± SD, and categorical variables were presented as counts (%) according to treatment groups. A repeated-measures analysis of variance was used to examine the mean change in RPR and RPP as well as the frequency and duration of PA according to treatment groups at the 6- and 12-month assessments. Each model included treatment and its error term (ie, subject nested in treatment) to account for between-subject error as well as the within-subject factor (ie, time) to account for residual error. Violations in model sphericity and lack of compound symmetry were addressed by computing P values for conservative F tests, reporting the Greenhouse-Geisser correction.

Longitudinal differences in RPR and RPP between treatment groups were evaluated using generalized estimating equation models, reporting unstandardized β coefficients with robust SE. In this model, the SA group served as the reference category. An unstructured covariance matrix was used to account for the overtime correlation between repeated measures. Several sensitivity checks were also performed using the generalized estimating equation method. First, participants who had a pacemaker (n = 8) were omitted from the analysis, as such devices artificially regulate RPR. Second, participants with a cardiac arrhythmia (n = 72) were omitted, as this condition may influence RPR and lead to unreliable estimates. Third, participants who reported taking medication (ie, β-blockers [n = 140], calcium-channel blockers [n = 122], diuretics [n = 158], or statins [n = 145]) who might have lowered RPR were also omitted. All statistical calculations were computed using STATA version 13.0 (StataCorp LP, College Station, TX). Results were considered statistically significant at a 2-tailed P < .05.

Results

The mean age of the 424 study participants was 76.8 ± 4.2 years. Overall, 68.9% were women, and 25.5%
belonged to a racial/ethnic minority. Participant demographics according to the intervention groups are provided in Table I. Both groups had similar characteristics, with the exception of diabetes, which was more prevalent in the PA group. Pairwise correlation revealed that RPR was not significantly associated with other indices of physical performance and cardiorespiratory fitness, for example, SPPB (r = 0.03; P = .35) and 400-meter walk test (r = 0.002; P = .93).

Attendance during the follow-up assessments was excellent, with rates of 94.8% at 6 months and 94.0% at 12 months. In the PA group, attendance rates to the maintenance phase were 70.7% and 60.9%, respectively. During the maintenance phase, participants engaged in an average 3.6 walking sessions per week and walked an average 149 ± 201 minutes per week. Attendance rates in the SA group were 70% for weeks 1 to 26 and 73% for weeks 27 to 52. The frequency of moderate PA and the estimated number of minutes spent in such activities (as assessed by CHAMPS) were similar between treatment groups at baseline but were significantly higher in the PA group compared with the SA group during follow-up (Table II).

As shown in Table III, mean RPR was similar between the PA and SA groups at baseline, and there were no significant differences in RPR between the 2 groups during follow-up. At 12 months, for example, RPR increased nonsignificantly by 0.58 beats/min in the PA group relative to the SA group (P = .51). Comparable results were observed for RPP (Table III). Specifically, over the course of the study, there was no significant decline (P = .78) in RPP between treatment groups. Because mean RPR was relatively low to begin with, we repeated the analyses, focusing only on participants with an RPR ≥80 beats/min (n = 37 for PA and n = 34 for SA group) and found no significant improvement for the PA group relative to the SA group (P = .15). Because diabetes was more prevalent in the PA group, it is possible that this condition may have diminished the RPR response to exercise. Our results did not change, however, after participants with diabetes were omitted from the analysis (P = .48). Lastly, the findings did not change appreciably for RPR after removing participants who had a pacemaker (P = .25), or those who reported the use of β-blockers (P = .45), or statins (P = .001). The discrepancy in findings raises important questions concerning the utility of

Table I. Study characteristics according to intervention groups

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>PA, n = 213</th>
<th>SA, n = 211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >80 y, n (%)</td>
<td>53 (24.9)</td>
<td>62 (29.4)</td>
</tr>
<tr>
<td>Female gender, n (%)</td>
<td>146 (68.5)</td>
<td>146 (69.2)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>160 (75.1)</td>
<td>155 (73.5)</td>
</tr>
<tr>
<td>African American/Black</td>
<td>37 (17.4)</td>
<td>40 (19.0)</td>
</tr>
<tr>
<td>Other</td>
<td>16 (7.5)</td>
<td>16 (7.6)</td>
</tr>
<tr>
<td>Income (USD), n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><15000</td>
<td>39 (18.3)</td>
<td>28 (13.3)</td>
</tr>
<tr>
<td>≥15000–<50000</td>
<td>101 (47.4)</td>
<td>91 (43.1)</td>
</tr>
<tr>
<td>≥50000</td>
<td>40 (18.8)</td>
<td>55 (26.1)</td>
</tr>
<tr>
<td>Other</td>
<td>33 (15.5)</td>
<td>37 (17.5)</td>
</tr>
<tr>
<td>Current smoker, n (%)</td>
<td>7 (3.3)</td>
<td>7 (3.3)</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>101.9 ± 15.5</td>
<td>99.8 ± 14.3</td>
</tr>
<tr>
<td>Blood pressure (mm Hg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>130 ± 17</td>
<td>130 ± 17</td>
</tr>
<tr>
<td>Diastolic</td>
<td>69 ± 9</td>
<td>70 ± 10</td>
</tr>
<tr>
<td>Prevalent diseases, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>148 (69.5)</td>
<td>145 (68.7)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>58 (27.2)</td>
<td>34 (16.1)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>24 (11.3)</td>
<td>15 (7.1)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>11 (5.2)</td>
<td>13 (6.2)</td>
</tr>
<tr>
<td>Stroke</td>
<td>8 (3.8)</td>
<td>12 (5.7)</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>39 (18.3)</td>
<td>33 (15.6)</td>
</tr>
<tr>
<td>Pacemaker</td>
<td>5 (2.4)</td>
<td>3 (1.4)</td>
</tr>
<tr>
<td>Cardiovascular medications, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-blockers</td>
<td>72 (33.8)</td>
<td>68 (32.2)</td>
</tr>
<tr>
<td>Calcium-channel blockers</td>
<td>65 (30.5)</td>
<td>57 (27.0)</td>
</tr>
<tr>
<td>Diuretics</td>
<td>83 (39.0)</td>
<td>75 (35.6)</td>
</tr>
<tr>
<td>Statins</td>
<td>80 (37.6)</td>
<td>65 (30.8)</td>
</tr>
<tr>
<td>SPPB score</td>
<td>7.6 ± 1.5</td>
<td>7.5 ± 1.4</td>
</tr>
<tr>
<td>400-m walk speed, m/s</td>
<td>0.86 ± 0.18</td>
<td>0.85 ± 0.18</td>
</tr>
</tbody>
</table>

Values reported as means ± SD or counts with proportions.
Abbreviations: PA, Physical activity; SA, successful aging; USD, United States dollars; SPPB, short physical performance battery.

Table II. Frequency and duration spent in moderate PA per week according to intervention group

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline</th>
<th>6 M</th>
<th>12 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of moderate PA per week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>2.8 ± 3.5</td>
<td>3.1 ± 4.0</td>
<td>3.1 ± 3.9</td>
</tr>
<tr>
<td>PA</td>
<td>2.7 ± 4.0</td>
<td>5.6 ± 4.7</td>
<td>4.5 ± 4.6</td>
</tr>
<tr>
<td>P</td>
<td>= .81</td>
<td>< .001</td>
<td>< .001</td>
</tr>
<tr>
<td>Minutes of moderate PA per week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>116.2 ± 171.2</td>
<td>135.2 ± 204.6</td>
<td>124.5 ± 170.0</td>
</tr>
<tr>
<td>PA</td>
<td>120.2 ± 195.9</td>
<td>220.9 ± 240.2</td>
<td>184.7 ± 197.6</td>
</tr>
<tr>
<td>P</td>
<td>= .82</td>
<td>< .001</td>
<td>< .001</td>
</tr>
</tbody>
</table>

Values reported as means ± SD. P values reporting Greenhouse-Geisser correction are shown for between-group differences.
exercise regimens, along with their influence on the magnitude of change in RPR with advancing age. Although younger persons may attain a meaningful reduction in RPR after a period of training, a comparable duration in training may exert little or no lowering effect on RPR in persons aged >70 years. Hence, further studies are required to determine whether aerobic training programs lasting longer than 12 months would be more effective for slowing RPR in older persons, compared with existing exercise strategies in this population.

The lack of an observed effect of walking on RPR raises additional questions about current guidelines regarding the specificity and/or intensity of PA in older humans and whether these guidelines should be refined to account for the possible effects other modes of exercise may have on RPR. Foremost, the capacity to perform more prolonged intensity exercise appears well preserved in older individuals—compelling evidence indicates that regular participation in endurance training may augment heart rate variability as well as lowering resting and submaximal heart rate. For instance, 6 months of sustained submaximal aerobic exercise (eg, between 50% and 85% heart rate reserve) consisting of walking, jogging, and bicycling 4 to 5 times per week increased heart rate variability by 68% (from 31 ± 5 to 52 ± 8 millisecond) and lowered heart rate at rest by 9 beats/min. A strenuous aerobic intensity training intervention of combined treadmill walking/running uphill at 90% to 95% maximum heart rate significantly lowered RPR by 10 beats/min (from 69 to 59 beats/min) in a group of healthy sedentary seniors. Donath et al observed a beneficial improvement in RPR among healthy older adults after completion of a stair climbing intervention. In that study, both 1-step and 2-step strategies significantly decreased RPR, with the latter approach revealing a more pronounced improvement. The findings from these studies indicate that other modes of high-intensity aerobic training may positively influence aging of the heart in older adults, perhaps offsetting some unhealthy processes such as impaired autonomic nervous system activity, endothelial dysfunction, and vascular stiffness.

The present study had some limitations that warrant discussion. The PA group attendance rates at the adoption and transition phases were 70.7% and 60.9%, respectively. Maintaining adherence represents a challenge in long-term PA trials involving older adults, and it is plausible that the effect of exercise training on lowering RPR may have differed had the complete study sample adhered to the PA program. Despite the declining adherence rate, however, LIFE-P has had significant benefits on other health outcomes including functional performance and mobility disability. Although we excluded participants who reported the use of β-blockers, we were unable to account for other types of medications (ie, calcium-channel blockers and statins) that may have had potential heart rate-lowering effects. These unconsidered medications might have contributed, in part, to the relatively low baseline RPR, which may not have been amenable to further reduction from an exercise intervention. In LIFE-P, RPR was not a predetermined outcome. Given the great expense of conducting high-quality clinical trials, however, outcomes beyond those included in the original protocol are often evaluated. Although some studies have assessed the efficacy of an exercise regimen for lowering the pulse rate in older adults, the findings from these studies are difficult to interpret due to the number of discrepant factors involved such as the large heterogeneity in subjects' age, relatively small sample sizes, and differences in outcome measurement methods. Foremost, the current study extends the limited available literature on this topic, as, to our knowledge, it represents the largest clinical trial to examine the efficacy of a moderate intensity exercise intervention for lowering RPR in older adults (n = 424), includes a sufficient and representative age range (ages 70-89 years), and used a standardized method of measurement for recording the RPR. Other strengths included a large representative sample of older community-dwelling adults, exceptional retention rate, and a single-masked design.

Although the risk of developing CVD tends to advance with aging, it is noteworthy that certain factors associated with this disease are often modifiable by practicing healthy behaviors used to promote and preserve well-being later in life. Although we were unable to establish a beneficial effect of PA on lowering RPR, our findings should not be used to discourage others who wish to examine the impact of exercise training on slowing RPR, particularly in seniors. The current lack of evidence in older adults emphasizes the pressing need for additional studies to further clarify the role of PA on attenuating RPR, an easy-to-obtain and affordable predictor of cardiovascular risk.

Disclosure

The authors have nothing to disclose.
Acknowledgements

We are eternally grateful to the LIFE-P participants for their involvement in this study. LIFE-P was funded by a grant from the National Institutes of Health (NIH)/National Institute on Aging (U01 AG22376) and supported in part by the Intramural Research Program, National Institute on Aging, NIH. Dr Gill is the recipient of an Academic Leadership Award (K07AG043587) from the National Institute on Aging and is supported by the Claude D. Pepper Older Americans Independence Center (P30AG021342). Dr Pahor's contribution is partially supported by the Geriatric Research, Education and Clinical Center, Malcolm Randall Veteran's Affairs Medical Center, and North Florida Veterans Health System, Gainesville, FL. Drs Gill and Pahor are responsible for the conception and design of LIFE-P as well as the collection and assembly of the data. Dr O'Hartaigh performed all of the statistical analyses and wrote the initial draft of the manuscript. All of the authors contributed toward the analysis and interpretation of the data and critical revision of the manuscript for important intellectual content. All of the authors approved the final draft of the article.

Appendix A. Research investigators for pilot phase of LIFE-P

Cooper Institute, Dallas, TX:

Steven N. Blair, PED—field center principal investigator
Timothy Church, MD, PhD, MPH—field center coprincipal investigator
Jamile A. Ashmore, PhD
Judy Dubreuil, MS
Georita Frierson, PhD
Alexander N. Jordan, MS
Gina Morss, MA
Ruben Q. Rodarte, MS
Jason M. Wallace, MPH
National Institute on Aging
Jack M. Guralnik, MD, PhD—coprincipal investigator of the study
Evan C. Hadley, MD
Sergei Romashkan, MD, PhD
Stanford University, Palo Alto, CA
Abby C. King, PhD—field center principal investigator
William L. Haskell, PhD—field center coprincipal investigator
Leslie A. Pruitt, PhD
Kari Abbott-Pilolla, MS
Karen Bolen, MS
Stephen Fortmann, MD
Ami Laws, MD
Carolyn Prosak, RD
Kristin Wallace, MPH
Tufts University

Roger Fielding, PhD
Miriam Nelson, PhD
Dr Fielding's contribution is partially supported by the US Department of Agriculture, under agreement no. 58-1950-4-401. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the US Department of Agriculture.

University of California, Los Angeles, Los Angeles, CA
Robert M. Kaplan, PhD, MA
VA San Diego Healthcare System and University of California, San Diego, San Diego, CA
Erik J. Groessl, PhD
University of Florida, Gainesville, FL
Marco Pahor, MD—principal investigator of the study
Michael Perri, PhD
Connie Caudle
Lauren Crump, MPH
Sarah Hayden
Latoria Holms
Cinzia Maraldi, MD
Crystal Quirin
University of Pittsburgh, Pittsburgh, PA
Anne B. Newman, MD, MPH—field center principal investigator
Stephanie Studenski, MD, MPH—field center coprincipal investigator
Bret H. Goodpaster, PhD, MS
Nancy W. Glynn, PhD
Erich K. Aiken, BS
Steve Anthony, MS
Sarah Beck (for recruitment papers only)
Judith Kadosh, BSN, RN
Piera Kost, BA
Mark Newman, MS
Jennifer Rush, MPH (for recruitment papers only)
Roberta Spanos (for recruitment papers only)
Christopher A. Taylor, BS
Pam Vincent, CMA
Diane Ives, MPH
The Pittsburgh Field Center was partially supported by the Pittsburgh Claude D. Pepper Center P30 AG024827.
Wake Forest University, Winston-Salem, NC
Stephen B. Kritchevsky, PhD—field center principal investigator
Peter Brubaker, PhD
Jamehl Demons, MD
Curt Furberg, MD, PhD
Jeffrey A. Katula, PhD, MA
Anthony Marsh, PhD
Barbara J. Nicklas, PhD
Jeff D. Williamson, MD, MPH
Rose Fries, LPM
Kimberly Kennedy
Karin M. Murphy, BS, MT (ASCP)
Shruti Nagaria, MS
Katie Wickley-Krupel, MS
Data Management, Analysis and Quality Control Center (DMAQC)
Michael E. Miller, PhD—DMAQC principal investigator
Revised 6/4/08
Mark Espeland, PhD—DMAQC coprincipal investigator
Fang-Chi Hsu, PhD
Walter J. Rejeski, PhD
Don P. Babcock, Jr, PE
Lorraine Costanza
Lea N. Harvin
Lisa Kaltenbach, MS
Wei Lang, PhD
Wesley A. Roberson
Julia Rushing, MS
Scott Rushing
Michael P. Walkup, MS
The Wake Forest University Field Center is, in part, supported by the Claude D. Older American Independence Pepper Center #1 P30 AG21332.
Yale University
Thomas M. Gill, MD
Dr Gill is the recipient of a Midcareer Investigator Award in Patient-Oriented Research (K24AG021507) from the National Institute on Aging.
The Lifestyle Interventions and Independence for Elders (LIFE-P) Pilot Study is funded by a National Institutes on Health/National Institute on Aging Cooperative Agreement #U01 AG22376 and sponsored in part by the Intramural Research Program, National Institute on Aging, NIH.

References